Proximate and ultimate causes of signal diversity in the electric fish Gymnotus.
نویسندگان
چکیده
A complete understanding of animal signal evolution necessitates analyses of both the proximate (e.g. anatomical and physiological) mechanisms of signal generation and reception, and the ultimate (i.e. evolutionary) mechanisms underlying adaptation and diversification. Here we summarize the results of a synthetic study of electric diversity in the species-rich neotropical electric fish genus Gymnotus. Our study integrates two research directions. The first examines the proximate causes of diversity in the electric organ discharge (EOD) - which is the carrier of both the communication and electrolocation signal of electric fishes - via descriptions of the intrinsic properties of electrocytes, electrocyte innervation, electric organ anatomy and the neural coordination of the discharge (among other parameters). The second seeks to understand the ultimate causes of signal diversity - via a continent-wide survey of species diversity, species-level phylogenetic reconstructions and field-recorded head-to-tail EOD (ht-EOD) waveforms (a common procedure for characterizing the communication component of electric fish EODs). At the proximate level, a comparative morpho-functional survey of electric organ anatomy and the electromotive force pattern of the EOD for 11 species (representing most major clades) revealed four distinct groups of species, each corresponding to a discrete area of the phylogeny of the genus and to a distinct type of ht-EOD waveform. At the ultimate level, our analyses (which emphasize the ht-EOD) allowed us to conclude that selective forces from the abiotic environment have had minimal impact on the communication component of the EOD. In contrast, selective forces of a biotic nature - imposed by electroreceptive predators, reproductive interference from heterospecific congeners, and sexual selection - may be important sources of diversifying selection on Gymnotus signals.
منابع مشابه
Species-Specific Diversity of a Fixed Motor Pattern: The Electric Organ Discharge of Gymnotus
Understanding fixed motor pattern diversity across related species provides a window for exploring the evolution of their underlying neural mechanisms. The electric organ discharges of weakly electric fishes offer several advantages as paradigmatic models for investigating how a neural decision is transformed into a spatiotemporal pattern of action. Here, we compared the far fields, the near fi...
متن کاملElectroreception in Gymnotus carapo: pre-receptor processing and the distribution of electroreceptor types.
This paper describes the peripheral mechanisms involved in signal processing of self- and conspecific-generated electric fields by the electric fish Gymnotus carapo. The distribution of the different types of tuberous electroreceptor and the occurrence of particular electric field patterns close to the body of the fish were studied. The density of tuberous electroreceptors was found to be maxim...
متن کاملSimulation and investigation of the effect of oil flow rate, electric signal of flow control valve and controller on the performance of a wet clutch
The using of wet clutches and hydraulic control devices causes a smoothly torque transfer. In this study, a wet clutch was simulated in Simulink MATLAB software. Firstly the mechanical section of the clutch was modeled and then the hydraulic section was simulated with the addition of electric flow control valve and inlet and outlet of oil flow. Finally, the effects of oil flow rate, electric s...
متن کاملElectroreception in Gymnotus carapo: differences between self-generated and conspecific-generated signal carriers.
Local electric fields generated by the electric organ discharge of Gymnotus carapo were explored at selected points on the skin of an emitter fish ('local self-generated fields') and on the skin of a conspecific ('local conspecific-generated fields') using a specially designed probe. Local self-generated fields showed a constant pattern along the body of the fish. At the head, these fields were...
متن کاملStatus-Dependent Vasotocin Modulation of Dominance and Subordination in the Weakly Electric Fish Gymnotus omarorum
Dominant-subordinate status emerges from agonistic encounters. The weakly electric fish, Gymnotus omarorum, displays a clear-cut example of non-breeding territorial aggression. The asymmetry in the behavior of dominants and subordinates is outstanding. Dominants are highly aggressive and subordinates signal submission in a precise sequence of locomotor and electric traits: retreating, decreasin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of experimental biology
دوره 216 Pt 13 شماره
صفحات -
تاریخ انتشار 2013